油气润滑,在学术界被称为“气液两相流体冷却润滑技术”,是一种新型的润滑技术,它与传统的单相流体润滑技术相比具有无可比拟的优越性。它成功地解决了干油润滑和油雾润滑所无法克服的难题,是润滑技术中的一朵正在绽放的瑰丽奇葩。它适应了机械工业设备的最新发展的需要,尤其适用于高温、重载、高速、极低速以及有冷却水和脏物侵入润滑点的工况条件恶劣的场合。由于它能解决传统的单相流体润滑技术无法解决的难题,并有非常明显的使用效果,大大延长了摩擦副的使用寿命,改善了现场的环境,因此正在得到越来越广泛的应用,尤其是在冶金工业领域。
在油气润滑管道中,压缩空气是润滑油的输送载体。如图1所示,当润滑油和压缩空气在油气混合块中混合形成油气流后,连续流动的压缩空气在油气管道中间高速向前流动。在压缩空气的作用下,润滑油以油膜形式粘附在管壁四周,并以缓慢的速度向前移动,在行将到达油气流出口时, 油膜变得越来越薄,且连成一片,最后以极其精细的连续油滴流喷射到润滑点。当油气混合物进入油气管道时,由于压缩空气的作用,起初,润滑油是以较大的颗粒粘附在管道内壁四周, 当压缩空气快速向前运动时,油滴也随之向前移动,并逐渐被压缩空气吹散、变小和变得越来越扁平。在行将到达管道末端时,原先是间断地粘附在管壁四周的油滴已连成一片,形成了连续油膜, 被压缩空气以精细的油滴喷入润滑点。由于连续油膜的形成要有一个过程,因此油气管道的长度不能小于0.5米。
乘坐过火车的人肯定有这样一种感性认识:在雨中高速行驶的列车,当雨点打在车窗的玻璃上时,很快被撞得粉碎,一滴雨珠在车窗玻璃上变成了一片。如果我们把车窗玻璃卷成圆筒,那就像油气管道内发生的情况一样,只不过在油气管道内被吹散的不是雨水而是油。
在油气管道中,油和气的速度是大相径庭的,油的移动速度大约为每秒2-5厘米,但这个数字也不是绝对的,因为油的移动速度受诸多因素的影响,比如空气速度、环境温度和润滑油的粘度等,但是它至少说明了一个问题,那就是与空气速度相比,润滑油在油气管道中移动的速度非常缓慢。所以,油和气不是融合在一起的,从油气管道出来的油气是分离的,这也是为什么油气润滑不会污染环境的原因。
在气液两相油气流中,液体与气体牢固地形成了气液两相膜,试验及实践结果表明,气液两相膜与单相液体膜相比,承载能力大大提高,它的形成兼有流体动压和流体静压的双重作用。因此,即使在速度较低时依然能够形成具有较强承载能力的气液两相膜,这是仅靠流体动压形成的单相液体膜无法比拟的。
研究同时表明,喷射到润滑点的气液两相流体中的润滑油液体小颗粒在润滑区固体表面汇聚,同时由高速流动的空气形成的孤立分散的空气小气泡混合于汇聚在润滑区固体表面的润滑液之中,随着两摩擦表面的相对运动,在两摩擦表面之间形成了气液两相流体润滑膜(即两相膜)。众所周知,粘度是润滑剂最重要的物理特性,在同等润滑剂条件下,两相流的粘度明显大于单向液体膜的粘度,而且随着两相流中空气小气泡相对体积含量的增加,两相流的粘度也增大,即普通粘度的润滑油形成的气液两相膜的厚度大于它的单向液体膜厚度。显然,由于润滑膜厚度的增加,使润滑膜形成率提高,减少了两摩擦表面直接接触的机会,减轻了两表面之间的摩擦,这就使得气液两相流体润滑具有优良的润滑减摩作用。